Wave propagation in the heterogeneous lower crust – Finite Difference calculations

نویسندگان

  • Martin Karrenbach
  • Joachim Ritter
  • Karl Fuchs
چکیده

Wave propagation in heterogeneous media is not only characterized by reflection, transmission and conversion of seismic energy but also by effects such as scattering and tunneling and can be observed on many scales. We investigate elastic wave propagation in the lower crust of the earth. It is remarkable that distance and time scales in a deep crustal reflection problem can be easily transformed into an exploration/production oriented problem. In that analog, the lower crust corresponds to some fractured medium or a medium with laminated inter bedding of source rocks, such as, sand and shale. We model surface seismic reflection data by positioning the source close to the surface. Wide-angle refraction data are simulated by placing the source into the lower crust. Teleseismic data are generated by having a plane or point source beneath the target zone. On that scale, a source with a frequency of 1Hz essentially sees an equivalent homogeneous medium, while a source with a dominant frequency of 5Hz, sees fine scale discontinuities as observed in various real data. Using a finite-difference technique, we employ models with spatially varying subsurface parameters. The fine scale heterogeneities are thin reflector segments, whose length and distance from each other are governed by a Poisson’s probability distribution. Wave type conversions are surprisingly well confined and can be easily identified in seismograms as on snapshots. The ultimate goal of this investigation is to determine whether we can image those reflector segments and determine their Vp/Vs ratio.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient finite difference time domain algorithm for band structure calculations of Phononic crystal

In this paper, a new algorithm for studying elastic wave propagation in the phononic crystals is presented. At first, the displacement-based forms of elastic wave equations are derived and then the forms are discretized using finite difference method. So the new algorithm is called the displacement-based finite difference time domain (DBFDTD). Three numerical examples are computed with this met...

متن کامل

MPI- and CUDA- implementations of modal finite difference method for P-SV wave propagation modeling

Among different discretization approaches, Finite Difference Method (FDM) is widely used for acoustic and elastic full-wave form modeling. An inevitable deficit of the technique, however, is its sever requirement to computational resources. A promising solution is parallelization, where the problem is broken into several segments, and the calculations are distributed over different processors. ...

متن کامل

Love Wave Propagation in a Fiber-reinforced Layer with Corrugated Boundaries Overlying Heterogeneous Half-space

Love-type wave generation in a fiber-reinforced medium placed over an inhomogeneous orthotropic half-space is analysed. The upper and lower boundary surfaces of the fiber reinforced medium are periodically corrugated. Inhomogeneity of half-space is caused by variable density and variable shear modules. Displacement components for layer and half-space are derived by applying separable variable t...

متن کامل

Torsional Surface Wave Propagation in Anisotropic Layer Sandwiched Between Heterogeneous Half-Space

The present paper studies the possibility of propagation of torsional surface waves in an inhomogeneous anisotropic layer lying between two heterogeneous half-spaces (upper and lower half-space). Both the half-spaces are assumed to be under compressive initial stress. The study reveals that under the assumed conditions, a torsional surface wave propagates in the medium. The dispersion relation ...

متن کامل

Torsional wave propagation in 1D and two dimensional functionally graded rod

In this study, torsional wave propagation is investigated in a rod that are made of one and two dimensional functionally graded material. Firstly, the governing equations of the wave propagation in the functionally graded cylinder derived in polar coordinate. Secondly, finite difference method is used to discretize the equations. The Von Neumann stability approach is used to obtain the time ste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001